

The project is supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research

Clean Hydrogen Project BRAVA No. 101101409

WP3 - Deliverable D3.4 – report Mid-report on 2-Phase Cooled Fuel Cell

Deliverable Details

Deliverable No.	3.4		
Related WP	3		
Deliverable Title	Mid-report on 2-PC FC		
Deliverable Date	31.05.2024		
Deliverable Type	REPORT		
Dissemination level	Yel Sensitive – member only (SEN)		
Author(s) and	uthor(s) andMarcus-Benedict Buntz (Aerostack GmbH)		
contributors	Johannes Letzgus (Aerostack GmbH)		
	Henk Jan van Gerner (NLR)		
Checked by	WP Leader: Henk Jan van Gerner (NLR)		
	Expert reviewer: Georg Mühlthaler (A-D)		
Final approval	Dirk Kastell (A-D)		

Change History

Version	Date	Changes	Done by	Approved by
V1	28.05.2024	First Version	Marcus-Benedict	Henk Jan van
			Buntz	Gerner

BRAKA

List of Acronyms and Abbreviations

Abbr.	Description	Abbr.	Description	
2-PC	Two-phase cooling	MEA	Membrane Electrode Assembly	
A/C	Aircraft	MCU	Motor control unit	
AM	Additive Manufacturing	MTBF	Mean Time Between Failure	
Bar(a)	Bar absolute pressure	MTC	Motorised turbo-compressor(s)	
Bar(g)	Bar gauge pressure (differential)	NM	Nautical mile	
BoP	Balance of Plant	OCV	Open circuit voltage	
BPP	Bipolar plate	OEM	Original Equipment Manufacturer	
ССМ	Catalytic coated membrane	PAX	Passengers	
CRA	Cell Row Assembly	PFSA	Perfluorosulfonic acid	
CA	Consortium agreement	PGS	Power Generation System	
CFD	Computational fluid dynamics	РоС	Proof of Concept	
CL	Catalyst layer(s)	POD	PGS Unit	
DCE	Dissemination, CommunicationPPSPropulsion Power Systemand Exploitation		Propulsion Power System	
DoE	Design of Experiment	PEM	proton exchange membranes	
DMU	Digital mock-up PEMFC Proton Exchange Membrane Fue		Proton Exchange Membrane Fuel Cell	
EASA	European Union Aviation Safety Agency	РМ	Particulate matter	
EOL	End of Life	RAC	Ram Air Channel(s)	
FC	Fuel Cell	RH	Relative humidity	
FEM	Finite Element Method	SAF	Synthetic aviation fuel	
FL250	Flight level 250 (= 25,000 ft)	SLM	Supporting layer manufacturing	
GDL	Gas Diffusion Layer	SoA	State of the Art	
GHG	Greenhouse gas	SoGDL	Seal-on-GDL	
GT	Gas turbine	SRIA	Strategic Research and Innovation Agenda	
GUI	Graphical User Interface	SSTR	Short Stack Test Rig	
НХ	Heat exchanger(s)	TMS	Thermal Management System	
IP	Intellectual property TEFO		Total Engine Flame Out	
IPN	Interpenetrating polymer networks	ТО	Take-Off	
IPR	Intellectual property rights	ТоС	Top of Climb	
ISA-35			Take-Off and Go-Around	
KPI			Technology Readiness Level	
KSO	Key Strategic Orientations VOC Volatile organic compounds			
L2	Liquified hydrogen			

BRAKA

1. Executive Public Summary

This report summarizes the activities of Aerostack in BRAVA WP3.1 "Small-scale 2-phase cooled fuel cell demonstrator" and gives an overview of the current status. To allow demonstration of two-phase cooling, a suitable fuel cell short stack is being designed and a two-phase mechanically pumped loop system for integration into a fuel cell test bench is developed by NLR.

For the development of the short stack, Aerostack follows an iterative development process, which means to rapid prototype flow-fields in graphite and test their performance with the new coolant and improve the design if necessary. A homogenous coolant flow distribution is crucial for fuel cell performance and lifetime. Flow maldistribution causing hotspots in the polymer electrolyte membrane needs to be prevented in any case. Therefore, the design activity is supported by CFD and thermal FEM modeling to improve the coolant flow distribution and provide suitable flow-fields for testing. The approach and methods are described in the first part of this report.

Besides the coolant distribution, another important fact for fuel cell longevity are the operating conditions. The switch from sensible heat transfer to latent heat transfer imposes a strong inlet temperature gradient and downstream a constant temperature value for the majority of the fuel cell active area. This is challenging for the water-management inside the cell, since gas channels could be flooded by condensate water at the inlet. Figuratively speaking, the first few centimeters of the inlet equal a rainforest, while the following largest part equals a dry desert. To cope with this situation in a 2-phase cooled cell, a large parameter study with a Modelica/Dymola model was performed in order to identify suitable operating conditions. The report describes the use of the design of experiment method for test planning and using a regression analysis to evaluate the large set of results.

The last part of the report describes the activities preparing for testing. On material level, first test results are available and discussed with background on the test method. On component level, a thermal cell was designed to test the current flow-field with 2-phase cooling ex-situ via heaters which was already shipped to NLR for testing. In parallel the development of the mechanically pumped two-phase cooling system for integration into Aerostack's fuel cell test bench is coordinated. The report summarizes the activities and gives an outlook on upcoming tasks.

BRAKA

8. Acknowledgments

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner short name	Partner Full Name
1	A-D	AIRBUS OPERATIONS GMBH
2	A-E	AIRBUS OPERATIONS SL
3	AER	AEROSTACK GMBH
4	CNRS	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
4.1	UM	UNIVERSITE DE MONTPELLIER
5	HER	HERAEUS DEUTSCHLAND GMBH & CO KG
6	LTS	LIEBHERR AEROSPACE TOULOUSE SAS
7	MAD	MADIT METAL S.L.
8	MOR	MORPHEUS DESIGNS S.L.
9	NLR	STICHTING KONINKLIJK NEDERLANDS LUCHT – EN RUIMTEVAARTCENTRUM
10	SOL	SOLVAY SPECIALTY POLYMERS ITALY SPA
10.1	RHOP	RHODIA OPERATIONS
10.2	RHLA	RHODIA LABORATOIRE DU FUTUR
11	TUB	TECHNISCHE UNIVERSITAT BERLIN

This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the BRAVA Consortium. Neither the BRAVA Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the BRAVA Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101101409. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them.

Copyright ©, all rights reserved.